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Abstract We study the phase diagram for Potts model on a Cayley tree with competing
nearest-neighbor interactions J1, prolonged next-nearest-neighbor interactions Jp and one-
level next-nearest-neighbor interactions Jo. Vannimenus proved that the phase diagram of
Ising model with Jo = 0 contains a modulated phase, as found for similar models on pe-
riodic lattices, but the multicritical Lifshitz point is at zero temperature. Later Mariz et al.
generalized this result for Ising model with Jo �= 0 and recently Ganikhodjaev et al. proved
similar result for the three-state Potts model with Jo = 0. We consider Potts model with
Jo �= 0 and show that for some values of Jo the multicritical Lifshitz point be at non-zero
temperature. We also prove that as soon as the same-level interactionJo is nonzero, the para-
magnetic phase found at high temperatures for Jo = 0 disappears, while Ising model does
not obtain such property. To perform this study, an iterative scheme similar to that appear-
ing in real space renormalization group frameworks is established; it recovers, as particular
case, previous work by Ganikhodjaev et al. for Jo = 0. At vanishing temperature, the phase
diagram is fully determined for all values and signs of J1, Jp and Jo. At finite temperatures
several interesting features are exhibited for typical values of Jo/J1.
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1 Introduction

Consideration of spin models with multispin interactions has proved to be fruitful in many
fields of physics, ranging from the determination of phase diagrams in metallic alloys and
exhibition of new types of phase transition, to site percolation.

Systems exhibiting spatially modulated structures, commensurate or incommensurate
with the underlying lattice, are of current interest in condensed matter physics [1]. Among
the idealized systems for modulated ordering, the axial next-nearest-neighbour Ising
(ANNNI) model, originally introduced by Elliot [2] to describe the sinusoidal magnetic
structure of Erbium, and the chiral Potts model, introduced by Ostlund [3] and Huse [4]
in connection with monolayers adsorbed on rectangular substrates, have been studied ex-
tensively by a variety of techniques. A particularly interesting and powerful method is the
study of modulated phases through the measure-preserving map generated by the mean-field
equations, as applied by Bak [5] and Jensen and Bak [6] to the ANNNI model. The main
drawback of the method lies in the fact that thermodynamic solutions correspond to station-
ary but unstable orbits. However, when these models are defined on Cayley trees, as in the
case of the Ising model with competing interactions examined by Vannimenus [7], it turns
out that physically interesting solutions correspond to the attractors of the mapping. This
simplifies the numerical work considerably, and detailed study of the whole phase diagram
becomes feasible. Apart from the intrinsic interest attached to the study of models on trees,
it is possible to argue that the results obtained on trees provide a useful guide to the more
involved study of their counterparts on crystal lattices.

The ANNNI model, which consists of an Ising model with nearest-neighbour interac-
tions augmented by competing next-nearest-neighbour couplings acting parallel to a single
axis direction, is perhaps the simplest nontrivial model displaying a rich phase diagram with
a Lifshitz point and many spatially modulated phases. There has been a considerable the-
oretical effort to obtain the structure of the global phase diagram of the ANNNI model in
the T − p space, where T is temperature and p = −J2/J1 is the ratio between the compet-
ing exchange interactions. On the basis of numerical mean-field calculations, Bak and von
Boehm [8] suggested the existence of an infinite succession of commensurate phases, the so-
called devil’s staircase, at low temperatures. This mean-field picture has been supported by
low-temperature series expansions performed by Fisher and Selke [9]. At the paramagnetic-
modulated boundary analytic mean-field calculations show that the critical wave number
varies continuously and vanishes at the Lifshitz point.

A phase diagram of a model describes a morphology of phases, stability of phases, tran-
sitions from one phase to another and corresponding transition lines. A Potts model just as
an Ising model with competing interactions has recently been studied extensively because
of the appearance of nontrivial magnetic orderings (see [7–16] and references therein). The
Cayley tree is not a realistic lattice; however, its amazing topology makes the exact calcula-
tion of various quantities possible. For many problems the solution on a tree is much simpler
than on a regular lattice and is equivalent to the standard Bethe-Peierls theory [17]. On the
Cayley tree one can consider two type of next-nearest-neighbours: prolonged and one-level
next-nearest-neighbours (definitions see below). In the case of the Ising model with compet-
ing nearest-neighbor interactions J and prolonged next-nearest-neighbour interactions Jp

Vannimenus [7] was able to find new modulated phases, in addition to the expected para-
magnetic and ferromagnetic ones. From this result follows that Ising model with competing
interactions on a Cayley tree is real interest since it has many similarities with models on
periodic lattices. In fact, it has many common features with them, in particular the existence
of a modulated phase, and shows no sign of pathological behavior—at least no more than
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mean-field theories of similar systems [7]. Moreover a detailed study of its properties was
carried out with essentially exact results, using rather simple numerical methods.

This suggest that more complicated models should be studied on trees, with the hope
to discover new phases or unusual types of behavior. The important point is that statistical
mechanics on trees involve nonlinear recursion equations and are naturally connected to the
rich world of dynamical systems, a world presently under intense investigation [7].

In [7] for Ising model on a Cayley tree with competing interactions, where the inter-
actions appear through the parameters a = exp(J/T ), b = exp(Jp/T ), the basic equations
have following form:

x ′ = 1

a2D
[(1 + b2x)2 + (y1 + b2y2)

2],

y ′
1 = 2

D
(b2y1 + y2)(b

2 + x), (1)

y ′
2 = − 2

a2D
(y1 + b2y2)(1 + b2x)

with

D = (b2 + x)2 + (b2y1 + y2)
2.

Later Mariz et al. [10] extended this results assuming the existence also of an interaction Jo

between the one-level nearest-next-neighbours. In this case the basic equations have form:

x ′ = (a2D)−1[b4(x2 + y2
2 ) + 2(b/c)2(x + y1y2) + (1 + y2

1 )],
y ′

1 = 2D−1[b4y1 + (b/c)2(y2 + y1x) + y2x], (2)

y ′
2 = −2(a2D)−1[b4y2x + (b/c)2(y2 + y1x) + y1],

where

D = b4(1 + y2
1 ) + 2(b/c)2(x + y1y2) + (x2 + y2

2 )

and c = exp(Jo/T ).

One can see that the presence of one-level next-nearest-neighbours interactions don’t
complicate the basic equations and respectively considered model. Both the recurrent equa-
tions (1) and recurrent equations (2) have a fixed point (x∗,0,0) and the transition lines may
then be obtained by linearizing the system (1) or (2) around the fixed point (x∗,0,0), where
x∗ is given by

x∗ = [(1 + b2x∗)/a(b2 + x∗)]2

in first case and by

x∗ = b4x∗2 + 2(b/c)2x∗ + 1

a2[b4 + 2(b/c)2x∗ + x∗2]
in second case.

The fixed point is linearly stable if the eigenvalues of linearized equations have module
smaller than one. Two cases should be examined, according to whether the eigenvalues are
real or complex.
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In [18, 19] Ising model with competing nearest-neighbour and one-level next-nearest-
neighbours interactions with presence of external magnetic field was studied. It is proved
that such model is exactly solvable and phase diagram of this model consists of ferro-
magnetic and antiferromagnetic phases only. Since the phase diagram of Ising model with
competing binary interactions contains a modulated phase if and only if nonzero prolonged
next-nearest-neighbour interaction is present.

In this paper we consider Potts model with competing binary interactions. The Potts
model [20] was introduced as a generalization of the Ising model to more than two compo-
nents and encompasses a number of problems in statistical physics (see, e.g. [21]) recently.
The model is structured richly enough to illustrate almost every conceivable nuance of the
subject. In [16], the phase diagram of the three states Potts model with nearest-neighbour in-
teractions J and prolonged next-nearest-neighbors interactions Jp was studied. In this case
the basic equations have following form:

x ′ = 1

2bD
[P (y1, y2, y3) + ((a + 1)x + 2 − y1 − ay2 − y3)

2],

y ′
1 = 2

D
(a + x)(ay1 + y2 + y3),

y ′
2 = − 1

bD
[y1 + ay2 + y3][2 + (a + 1)x − (a − 1)(y2 − y3)],

y ′
3 = 1

bD
(a − 1)(y3 − y2)[2 + (a + 1)x − 2y1 − (a + 1)(y2 + y3)],

(3)

where

D = (a + x)2 + (ay1 + y2 + y3)
2,

P (y1, y2, y3) = 3y2
1 + (4a2 − 4a + 3)y2

2 + (3a2 − 4a + 4)y2
3 + 2(2a + 1)y1y2

+ 2(a + 2)y1y3 − (2a2 − 7a + 2)y2y3,

and a = exp(Jp/T ), b = exp(J/T ).

One can see that this system have a fixed point (x∗,0,0,0) and the transition lines may
then be obtained by linearizing it around the fixed point (x∗,0,0,0), where x∗ is given by

x∗ = 1

2b

[
(1 + ax∗) + 2

a + x∗

]2

.

The diagram of this model consists of five phases: ferromagnetic, paramagnetic, modu-
lated, antiphase and paramodulated, all meet at the point (T = 0,−Jp/J = 1/3). A distinc-
tive feature of the diagram is seen in the existence of a new phase, i.e. paramodulated phase
found at low temperatures, forming an island inside the modulated phase. Numerical inves-
tigations of the dynamics of (3) show that in some values of the parameters T/J and −Jp/J

it has y1 = y2 = y3 = 0. In the plane (T /J,Jp/J ) such values form a leaf shaped island
inside the modulated region (see [16]). In this island, the average magnetization is equal to
0 with respect to the centered set of spins {−1,0,1} as in the paramagnetic case. Therefore,
we denote it as paramodulated phase. It is inherent in the Potts model as no analogue could
be found within the Ising setting.
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The aim of this paper is to extend the results of [16] to the Potts model with competing
nearest-neighbour, prolonged next-nearest-neighbour and one-level next-nearest-neighbour
interactions and to clarify the role of one-level next-nearest-neighbour interactions.

The main new result is that the introduction of one-level (same-level) interactions has a
strong effect on the phase diagram:

firstly it appears to shift the multicritical Lifshitz to finite temperature, while it was stuck
at zero temperature T for all systems with competing interactions, Ising or Potts, studied on
the Cayley tree previously [7, 10, 16];

secondary, as soon as the same-level interactionJo is nonzero, the paramagnetic phase
found at high temperatures for Jo = 0 disappears, while Ising model does not obtain such
property [10].

2 Definitions

Cayley Tree A Cayley tree �k of order k ≥ 1 is an infinite tree, i.e., a graph without cycles
with exactly k + 1 edges issuing from each vertex. Let denote the Cayley tree as �k =
(V ,�), where V is the set of vertices of �k , � is the set of edges of �k . Two vertices x

and y, x, y ∈ V are called nearest-neighbors if there exists an edge l ∈ � connecting them,
which is denoted by l = 〈x, y〉. The distance d(x, y), x, y ∈ V , on the Cayley tree �k , is the
number of edges in the shortest path from x to y. For a fixed x0 ∈ V we set

Wn = {x ∈ V | d(x, x0) = n}, Vn = {x ∈ V | d(x, x0) ≤ n}

and Ln denotes the set of edges in Vn. The fixed vertex x0 is called the 0-th level and the
vertices in Wn are called the n-th level. For the sake of simplicity we put |x| = d(x, x0),
x ∈ V . Two vertices x, y ∈ V are called the next-nearest-neighbours if d(x, y) = 2. The
next-nearest-neighbour vertices x and y are called prolonged next-nearest-neighbours if
|x| �= |y| and is denoted by ˜〉x, y〈. The next-nearest-neighbour vertices x, y ∈ V that are not
prolonged are called one-level next-nearest-neighbours since |x| = |y| and are denoted by
〉x, y〈.

Below we will consider a semi-infinite Cayley tree �2+ of order 2, i.e. an infinite graph
without cycles with 3 edges issuing from each vertex except for x0 which has only 2 edges.

The Model For the three-state Potts model with spin values in � = {1,2,3}, the relevant
Hamiltonian with competing nearest-neighbour and next-nearest-neighbour binary interac-
tions has the form

H(σ) = −Jo

∑
〉x,y〈

δσ(x)σ (y) − Jp

∑
˜〉x,y〈

δσ(x)σ (y) − J1

∑
〈x,y〉

δσ(x)σ (y), (4)

where Jo, Jp, J1 ∈ R are coupling constants and δ is the Kronecker symbol. This model
recovers that in [16] for Jo = 0. This choice is not a mere mathematical complication of
the previous results since, as we shall see later on, a significantly richer phase diagram is
obtained.
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Note that the case Jp = 0, i.e., the prolonged interaction vanishes, was fully investigated
in [15] and [22]. It was produced the following system of recurrent equations:

un+1 = c + 2a2un + 2vn + 2a2unvn + a4cu2
n + cv2

n

a4c + c(u2
n + v2

n) + 2unvn + 2a2(un + vn)
,

vn+1 = c + 2un + 2a2vn + 2a2unvn + cu2
n + a4cv2

n

a4c + c(u2
n + v2

n) + 2unvn + 2a2(un + vn)
.

(5)

Here a = exp(Jo/2T ), c = exp(J1/T ),un = Z
(n)
2

Z
(n)
1

, vn = Z
(n)
3

Z
(n)
1

and Z
(n)
i is the partition function

on Vn with the spin i in the root x0, i = 1,2,3.

Elementary analysis of this system of recurrent equations shows that this restricted model
(Jp = 0) is exactly solvable, that is, one can find exact value of T ∗ such that a phase tran-
sition occurs for all T < T ∗, where T ∗ is a critical value of temperature [22]. In addition
the phase diagram of this model consists of ferromagnetic and antiferromagnetic phases
only. Thus the phase diagram of Potts model with competing binary interactions like Ising
model contains a modulated phase if and only if nonzero prolonged next-nearest-neighbour
interaction is present.

3 Basic Equations

Let �2+ be a Cayley tree of second order, i.e. an infinite graph without cycles with 3 edges
issuing from each vertex except for x0 which has only 2 edges. In order to produce the re-
current equations, we consider the relation of the partition function on Vn to the partition
function on subsets of Vn−1. Given the initial conditions on V1, the recurrence equations in-
dicate how their influence propagates down the tree. Below we consider following partition
functions:

Z
(n)
i is a partition function on Vn with the spin i in the root x0, i = 1,2,3;

Z(n)(i, j) is a partition function on Vn with the configuration (i, j) on an edge 〈x0, x〉,
where x ∈ W1 and i, j = 1,2,3;

Z(n)(i1, i0, i2) is a partition function on Vn where the spin in the root x0 is i0 and the two
spins in the proceeding ones are i1 and i2, respectively.

There are 27 different partition functions Z(n)(i1, i0, i2) and the partition function Z(n) in
volume Vn can the be written as follows

Z(n) =
3∑

i1,i0,i2=1

Z(n)(i1, i0, i2)

and

Z(n)(i1, i0, i2) = exp

(
J0

T
· δi1i2

)
Z(n)(i0, i1)Z

(n)(i0, i2).

Assume

Z(n)(1,1) = cA
(n)

1 , Z(n)(1,2) = B
(n)

1 , Z(n)(1,3) = C
(n)

1 ,

Z(n)(2,1) = A
(n)

2 , Z(n)(2,2) = cB
(n)

2 , Z(n)(2,3) = C
(n)

2 ,

Z(n)(3,1) = A
(n)

3 , Z(n)(3,2) = B
(n)

3 , Z(n)(3,3) = cC
(n)

3 .
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Then through a direct calculation one gets the following system of recurrent equations:

Z(n)(1,1,1) = a2c2(A
(n)

1 )2, Z(n)(1,1,2) = cA
(n)

1 B
(n)

1 , Z(n)(1,1,3) = cA
(n)

1 C
(n)

1 ,

Z(n)(2,1,1) = Z(n)(1,1,2), Z(n)(2,1,2) = a2(B
(n)

1 )2, Z(n)(2,1,3) = B
(n)

1 C
(n)

1 ,

Z(n)(3,1,1) = Z(n)(1,1,3), Z(n)(3,1,2) = Z(n)(2,1,3),

Z(n)(3,1,3) = a2(C
(n)

1 )2,

Z(n)(1,2,1) = a2c2(A
(n)

2 )2, Z(n)(1,2,2) = cA
(n)

2 B
(n)

2 , Z(n)(1,2,3) = A
(n)

2 C
(n)

2 ,

Z(n)(2,2,1) = Z(n)(1,2,2), Z(n)(2,2,2) = a2c2(B
(n)

2 )2,

Z(n)(2,2,3) = cB
(n)

2 C
(n)

2 ,

Z(n)(3,2,1) = Z(n)(1,2,3), Z(n)(3,2,2) = Z(n)(2,2,3),

Z(n)(3,2,3) = a2(C
(n)

2 )2,

Z(n)(1,3,1) = a2(A
(n)

3 )2, Z(n)(1,3,2) = A
(n)

3 B
(n)

3 , Z(n)(1,3,3) = cA
(n)

3 C
(n)

3 ,

Z(n)(2,3,1) = Z(n)(1,3,2), Z(n)(2,3,2) = a2(B
(n)

3 )2, Z(n)(2,3,3) = cB
(n)

3 C
(n)

3 ,

Z(n)(3,3,1) = Z(n)(1,3,3), Z(n)(3,3,2) = Z(n)(2,3,3),

Z(n)(3,3,3) = a2c2(C
(n)

3 )2,

(6)

where a = exp( Jo

2T
); b = exp(

Jp

T
), c = exp(

J1
T

). The asymptotic behavior of this system
is defined by the first datum, which is in turn determined by a boundary condition σ̄n =
{σ(x), x ∈ V \ Vn}.

For the free boundary we have

A
(n)

1 = B
(n)

2 = C
(n)

3 ,

A
(n)

2 = A
(n)

3 = B
(n)

1 = B
(n)

3 = C
(n)

1 = C
(n)

2 ,

so that

Z
(n)

1 = Z
(n)

2 = Z
(n)

3 .

If consider all partition functions in volume Vn under the boundary condition σ̄n ≡ 1, then

B
(n)

1 = C
(n)

1 , A
(n)

2 = A
(n)

3 ,

B
(n)

2 = C
(n)

3 , B
(n)

3 = C
(n)

2 ,

and

Z
(n)

2 = Z
(n)

3 .

Similarly for the boundary condition σ̄n ≡ 2 we have

Z
(n)

1 = Z
(n)

3

and for boundary condition σ̄n ≡ 3

Z
(n)

1 = Z
(n)

2 .

where Z
(n)
i is the partition function on Vn with the spin i in the root x0, i = 1,2,3.
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If Jp = 0, i.e. b = 1, then from the system of equations (6) we derive

Z
(n+1)

1 = a2c2(Z
(n)

1 )2 + 2cZ
(n)

1 Z
(n)

2 + 2cZ
(n)

1 Z
(n)

3 + a2(Z
(n)

2 )2 + 2cZ
(n)

2 Z
(n)

3 + a2(Z
(n)

3 )2,

Z
(n+1)

2 = a2(Z
(n)

1 )2 + 2cZ
(n)

1 Z
(n)

2 + 2Z
(n)

1 Z
(n)

3 + a2c2(Z
(n)

2 )2 + 2cZ
(n)

2 Z
(n)

3 + a2(Z
(n)

3 )2,

Z
(n+1)

3 = a2(Z
(n)

1 )2 + 2Z
(n)

1 Z
(n)

2 + 2cZ
(n)

1 Z
(n)

3 + a2(Z
(n)

2 )2 + 2cZ
(n)

2 Z
(n)

3 + a2c2(Z
(n)

3 )2.

(7)

Letting

un = Z
(n)

2

Z
(n)

1

, vn = Z
(n)

3

Z
(n)

1

from (7) one gets (5) above. Note that if σ̄n ≡ 1, then un = vn while they can differ
in (5)—so a possibility for symmetry-breaking disappears.

Now let us assume that Jp �= 0 and σ̄n ≡ 1. Then the system (6) reduces to a system con-
sisting of five independent variables Z(n)(1,1,1), Z(n)(2,1,2), Z(n)(1,2,1), Z(n)(2,2,2),
Z(n)(3,2,3) and with the introduction of new variables

u
(n)

1 =
√

Z(n)(1,1,1), u
(n)

2 =
√

Z(n)(2,1,2),

u
(n)

3 =
√

Z(n)(1,2,1), u
(n)

4 =
√

Z(n)(2,2,2),

u
(n)

5 =
√

Z(n)(3,2,3),

straightforward calculations show that

u
(n+1)

1 = ac[b2u
(n)

1

2 + 4a−1bu
(n)

1 u
(n)

2 + 2(a2 + 1)u
(n)

2

2],
u

(n+1)

2 = a[b2u
(n)

3

2 + 2a−2bu
(n)

3 u
(n)

4 + 2a−2bu
(n)

3 u
(n)

5 + u
(n)

4

2 + 2a−2u
(n)

4 u
(n)

5 + u
(n)

5

2],
u

(n+1)

3 = a[u(n)

1

2 + 2a−1(b + 1)u
(n)

1 u
(n)

2 + (a2b2 + 2b + a2)u
(n)

2

2],
u

(n+1)

4 = ac[u(n)

3

2 + 2a−2bu
(n)

3 u
(n)

4 + 2a−2u
(n)

3 u
(n)

5 + b2u
(n)

4

2 + 2a−2bu
(n)

4 u
(n)

5 + u
(n)

5

2],
u

(n+1)

5 = a[u(n)

3

2 + 2a−2bu
(n)

3 u
(n)

5 + 2a−2u
(n)

3 u
(n)

4 + u
(n)

4

2 + 2a−2bu
(n)

4 u
(n)

5 + b2u
(n)

5

2].

(8)

The total partition function is given in terms of (ui) by

Z(n) = [u(n)

1

2 + 4a−2u
(n)

1 u
(n)

2 + 2(1 + a−2)u
(n)

2

2]
+ 2[u(n)

3

2 + u
(n)

4

2 + u
(n)

5

2 + 2a−2(u
(n)

3 u
(n)

4 + u
(n)

3 u
(n)

5 + u
(n)

4 u
(n)

5 )].

We note that, in the paramagnetic phase (high symmetry phase), u1 = u4 and au2 =
u3 = u5. For discussing the phase diagram, the following choice of reduced variables is
convenient:

x = 2au2 + u3 + u5

u1 + u4
, y1 = u1 − u4

u1 + u4
,

y2 = au2 − u3

u1 + u4
, y3 = au2 − u5

u1 + u4
.

The variable x is just a measure of the frustration of the nearest-neighbour bonds and is not
an order parameter like y1, y2 and y3. Equations (8) yield:
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x ′ = 1

2cD
[(a2b2 + ab2 + a2 + a + 2b + 2a−1b)x2 + 4(b + 1)(a−1 + 1)x + 4a(a + 1)

− 4(b + 1)xy1 + 2(ab2 + a2 − 3a2b2 − 2b − a)xy2

+ 2(a2b2 − ab2 − 3a2 − 2b + a)xy3

+ 4a(a + 1)y2
1 + (9a2b2 + ab2 + a2 + 5a − 6b − 2a−1b)y2

2

+ (a2b2 + 5ab2 + 9a2 + a − 6b − 2a−1b)y2
3

+ 4(3b − 1 + 2a−1)y1y2 + 4(3 − b + 2a−1b)y1y3 + 2(6a−1b − ab2 − 3a2b2

+ 10b − 3a2 − a)y2y3 − 8a2y1 + 4(1 − 3b + a−1b − a−1b)y2

+ 4(b − 3 − a−1b + a−1)y3];

y ′
1 = 2

D
[2a−1bxy1 + (a + a−1)x(y2 + y3) + (a−1 − a)(y2

2 + y2
3 ) + 2(a − a−1)y2y3

+ 2b[aby1 + a−1(y2 + y3)];

y ′
2 = 1

4cD
[(a2b2 − ab2 + a2 − a + 2b − 2a−1b)x2 + 4(b + 1)(1 − a−1)x + 4a(a − 1)

− 4(b + 1)(a−1 + 1)xy1 + 2(a2 − a − ab2 − 3a2b2 − 2b − 2a−1b)xy2

+ 2(a2b2 − ab2 − 3a2 − 2b − 2a−1b − a)xy3 + 4a(a − 1)y2
1

(9)+ (9a2b2 − ab2 + a2 − a − 6b − 2a−1b)y2
2

+ (a2b2 − ab2 + 9a2 − a − 6b − 2a−1b)y2
3

+ 4(3b − 1 − a−1b − a−1)y1y2 + 4(3 − b − a−1b − a−1)y1y3

+ 2(10b − 2a−1b − ab2 − 3a2b2 − 3a2 − a)y2y3

− 8a(a + 1)y1 + 4(1 − 3b − a−1b − a−1)y2 + 4(b − 3 − a−1b − a−1)y3];

y ′
3 = 1

4cD
[(a2b2 + 2b + a2 − a − ab2 − 2a−1b)x2 + 4(b + 1)(1 − a−1)x + 4a(a − 1)

+ 4(b + 1)(a−1 − 1)xy1 + 2(a2 + 3a − 3a2b2 − ab2 − 2b + 2a−1b)xy2

+ 2(a2b2 + 3ab2 − 3a2 − a − 2b + 2a−1b)xy3 + 4a(a − 1)y2
1

+ (9a2b2 − ab2 + a2 − 9a − 6b + 6a−1b)y2
2

+ (a2b2 − 9ab2 + 9a2 − a − 6b + 6a−1b)y2
3

+ 4(3b − 1 + a−1b − 3a−1)y1y2 + 4(3 − b − 3a−1b + a−1)y1y3

+ 2(10b − 10a−1b + 3ab2 − 3a2b2 − 3a2 + 3a)y2y3

− 8a(a − 1)y1 + 4(1 − 3b − a−1b + 3a−1)y2 + 4(b − 3 + 3a−1b − a−1)y3];
where

D = (a + a−1)x2 + 4a−1bx + 2ab2

+ 2ab2y2
1 + (3a − a−1)(y2

2 + y2
3 ) + 4a−1by1(y2 + y3) + 2(3a−1 − a)y2y3.

If a = 1, that is Jo = 0, this system of equations reduced to (3).
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The average magnetization m for the n-th generation is given by

m = 2 − 4[(a−2 − 1)(y2 − y3)
2 + 2(y1 + a−2y2 + y3) + (2a−2y1 + (a−2 + 1)(y2 + y3))x]

B
(10)

where

B = 3x2 + 6 + 6y2
1 + 11(y2

2 + y2
3 ) − 2x(y2 + y3) − 10y2y3 − 4y1

+ a−2[3x2 − 5(y2
2 + y2

3 ) − 2x(y2 + y3) + 4(3x − y2 − y3 − y1x + 3y1(y2 + y3))

+ 22y2y3)].
If a = 1, i.e., Jo = 0, then it has more simple form

m = 2 − 4(1 + x)Y

3(1 + x)2 − 2(1 + x)Y + 3Y 2
(11)

where Y = y1 + y2 + y3 [16].
The system of four equations finally obtained (9) is essentially complicated than the

similar basic equations (1)–(3) of the Ising model [7, 10] and Potts model with Jo = 0 [16]
respectively. The novelty and complication of the basic equations (9) consist in that it has
no explicit fixed points so that we cannot apply method of linearization whereas the basic
equations of the Ising model [7, 10] and Potts model with Jo = 0 [16] had explicit fixed
point and they were investigated using method of linearization. Therefore here the method
of linearization is not suitable. Analitic investigation of (9) will be discussed later on. Below
we use numerical methods to study its detailed behavior.

4 Morphology of the Phase Diagram

It is convenient to know the broad features of the phase diagram before discussing
the different transitions in more detail. This can be achieved numerically in a straight-
forward fashion. The recursion relations (9) provide us the numerically exact phase
diagram in (T /J1,−Jp/J1, Jo/J1) space. Let T/J1 = α, −Jp/J1 = β , Jo/J1 = γ and
respectively c = exp(α−1), b = exp(−α−1β) and a = exp((2α)−1γ ). Starting from initial
conditions

x(1) = 2ab2 + c2 + 1

b2c3 + c
, y

(1)

1 = b2c2 − 1

b2c2 + 1
,

y
(1)

2 = ab2 − c2

b2c3 + c
, y

(1)

3 = ab2 − 1

b2c3 + c

that corresponds to boundary condition σ̄1 ≡ 1, one iterates the recurrence relations (9) and
observes their behavior after a large number of iterations. In the simplest situation a fixed
point (x∗, y∗

1 , y∗
2 , y∗

3 ) is reached. It corresponds to a paramagnetic phase if y∗
1 = 0, y∗

2 = 0,
y∗

3 = 0 or to a ferromagnetic phase if y∗
1 , y∗

2 , y∗
3 �= 0. Note that only if Jo = 0 [16] a situation

where y∗
1 , y∗

2 , y∗
3 �= 0 but average magnetization (11) m = 2 cannot occur (see also [7]).

Secondary, the system may be periodic with period p, where case p = 2 corresponds to
antiferromagnetic phase and case p = 4 corresponds to so-called antiphase, that denoted
〈2〉 for compactness. Finally, the system may remain aperiodic. The distinction between a
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Fig. 1 (Color online) γ = 0

truly aperiodic case and one with a very long period is difficult to make numerically. Below
we consider periodic phases with period p where p ≤ 12. All periodic phases with period
p > 12 and aperiodic phase we will consider as modulated phase.

The resultant phase diagrams for some values of γ are shown in Figs. 1–5.
In Fig. 1 we consider all possible signs of Jp and J1 with γ = 0, i.e., Jo = 0, whereas in

[16] was considered J1 > 0 and Jp < 0 only. In first quadrant (Jp < 0;J1 > 0) the diagram
consists of five phases: ferromagnetic, paramagnetic, modulated, antiphase and paramodu-
lated, all meeting at the multicritical point (T = 0,−Jp/J1 = 1/3) [16], i.e., this point is
five-critical one. In second quadrant (Jp > 0;J1 > 0) the diagram consists of ferromagnetic
and paramagnetic pases only. Similarly in fourth quadrant (Jp > 0;J1 < 0) the diagram
consists of antiferromagnetic and modulated phases only. In third quadrant (Jp > 0;J1 < 0)

phase diagram consists of mainly paramagnetic phase, phase with period 3, modulated phase
and a some numbers of islands with different phases. Here these three phases, namely
paramagnetic, phase with period 3 and modulated phase, meet at the multicritical point
(T /J1 = −0.5, Jp/J1 = 0.5), that is three-critical one.

In following figures one can see the significance of parameter J0. Firstly in Fig. 2 we con-
sider the values of γ that very close to 0, i.e., Jo is rather small.

Looking these phase diagrams one can see that paramagnetic phase in Fig. 1 replaced
by ferromagnetic one with preserving other phases, therefore in second quadrant (Jp >

0, J1 > 0) the phase diagram consists of ferromagnetic phase only. Above (Fig. 1) we have
seen that for Jo = 0 a ferromagnetic phase exists for J1 > 0 only and antiferromagnetic
phase exists for J1 < 0 only. However at presence one-level interaction Jo �= 0, firstly phase
diagram does not contain the paramagnetic phase and secondary phase diagram contains
ferromagnetic phase for both J1 > 0 and J1 < 0.
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Fig. 2 (Color online) γ = 0.001 and γ = −0.001

Fig. 3 (Color online) γ = 1 and γ = −1

It is easy to explain mathematically the absence of paramagnetic phase for Jo �= 0. In
fact if Jo �= 0, then a �= 1 so that the system of recurrent equation (9) does not obtain a fixed
point of the form (x∗,0,0,0).

Now in Fig. 3 consider case |J1| = |Jo|, i.e., |γ | = 1. One can see that for γ = 1
in first quadrant there is three-critical point (T = 0,−Jp/J1 = 0.3) and critical points
in other quadrants are double-critical ones. For γ = −1 the critical points in first and
fourth quadrant are double-critical and in third quadrant there are two three-critical points
(T /J1 = −0.1,−Jp/J1 = −0.1) and (T /J1 = −0.4,−Jp/J1 = −1). If |γ | = 5 (Fig. 4)



Modulated Phase of a Potts Model with Competing Binary Interactions 713

Fig. 4 (Color online) γ = 5 and γ = −5

Fig. 5 (Color online) γ = 10 and γ = −10

then for γ = 5 we can find two three-critical points at nonzero temperature in first quadrant,
and two double-critical points in third quadrant. For γ = −5 we have one double-critical
point in first quadrant and three three-critical points at nonzero temperature in third quad-
rant.

Lastly consider the case |γ | = 10 (Fig. 5). For γ = 10 we have two three-critical points
with higher non zero temperature at them and two double critical points at nonzero temper-
ature also. If γ = −10 in third quadrant we have three-critical and double critical points at
nonzero temperature.
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5 Conclusion

The Potts model on a Cayley tree with competing nearest-neighbor interactions J1, pro-
longed next-nearest-neighbor interactions Jp and one-level next-nearest-neighbor interac-
tions Jo is rather complicated model than Ising model with competing interactions. The
basic equations produced for Potts model with competing prolonged and one-level next-
nearest-neighbours and binary nearest neighbours interactions are essentially complete than
similar equations produced in [7, 10] and [16]. To investigate them we need to apply some
new methods differ than linearization. For γ �= 0, firstly the phase diagram does not con-
tain paramagnetic phase and secondary, one can find the multicritical Lifshitz points that
are at nonzero temperature where this temperature increase with increasing |γ |. Although
the Cayley tree is not a realistic model, one can hope that the results obtained in the present
work can simulate the behavior realistic systems. As pointed by Vannimenus [7], a Cayley
tree is a counterpart of the ANNNI model, which is used to provide an approximate descrip-
tion of some materials, such as CESb and ferroelectric NaNO2. Other possible realizations
of a system which properties similar to those of the Cayley tree are those where there is a
gradient in the density of magnetic atoms, as suggested by Moraal [23].

Acknowledgements The first named author (N.G.) thanks TUBITAK for providing partial financial sup-
port and Harran University for kind hospitality and providing all facilities. The authors are indebted to student
of Department of Mathematics Harran University Abdulkadir Tekpinar for computational assistance. This
work was partially supported by Research Endowment Fund IIUM EDW B 0902-199. The authors thank
referees for their essential remarks.

References

1. Bak, P.: Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 45,
587–629 (1982)

2. Elliott, R.J.: Phenomenological discussion of magnetic ordering in the heavy rare-earth metals. Phys.
Rev. 124, 346–353 (1961)

3. Ostlund, S.: Incommensurate and commensurate phases in asymmetric clock models. Phys. Rev. B 24,
398–405 (1981)

4. Huse, D.A.: Simple three-state model with infinitely many phases. Phys. Rev. B 24, 5180–5194 (1981)
5. Bak, P.: Chaotic behavior and incommensurate phases in the anisotropic Ising model with competing

interactions. Phys. Rev. Lett. 46, 791–794 (1981)
6. Jensen, M.H., Bak, P.: Mean-field theory of the three-dimensional anisotropic Ising model as a four-

dimensional mapping. Phys. Rev. B 27, 6853–6868 (1983)
7. Vannimenus, J.: Modulated phase of an Ising system with competing interactions on a Cayley tree.

Z. Phys. B 43, 141–148 (1981)
8. Bak, P., von Boehm, J.: Ising model with solitons, phasons, and “the devil’s staircase”. Phys. Rev. B 21,

5297–5308 (1980)
9. Fisher, M.E., Selke, W.: Infinitely many commensurate phases in a simple Ising model. Phys. Rev. Lett.

44, 1502–1505 (1980)
10. Mariz, M., Tsalis, C., Albuquerque, A.L.: Phase diagram of the Ising model on a Cayley tree in the

presence of competing interactions and magnetic field. J. Stat. Phys. 40, 577–592 (1985)
11. Inawashiro, S., Thompson, C.J.: Competing Ising interactions and chaotic glass-like behaviour on a

Cayley tree. Phys. Lett. 97A, 245–248 (1983)
12. Yokoi, C.S.O., Oliveira, M.J., Salinas, S.R.: Strange attractor in the Ising model with competing interac-

tions on the Cayley tree. Phys. Rev. Lett. 54, 163–166 (1985)
13. Tragtenberg, M.H.R., Yokoi, C.S.O.: Field behaviour of an Ising model with competing interactions on

the Bethe lattice. Phys. Rev. E 52, 2187–2197 (1995)
14. Coutinho, S., Morgado, W.A.M., Curado, E.M.F., da Silva, L.: The ferromagnetic Potts model under

an external magnetic field: an exact renormalization groupapproach. Phys. Rev. B 74(9), 094432-1-7
(2006)



Modulated Phase of a Potts Model with Competing Binary Interactions 715

15. Ganikhodjaev, N.N., Mukhamedov, F.M., Mendes, J.F.F.: On the three state Potts model with competing
interactions on the Bethe lattice. J. Stat. Mech. P08012 (2006)

16. Ganikhodjaev, N.N., Mukhamedov, F.M., Pah, C.H.: Phase diagram of the three states Potts model with
next-nearest-neighbour interactions on the Bethe lattice. Phys. Lett. A 373, 33–38 (2008)

17. Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. 51, 82–98
(1974)

18. Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: An Ising model with three competing interactions
on a Cayley tree. J. Math. Phys. 45, 3645–3658 (2004)

19. Ganikhodjaev, N.N., Rozikov, U.A.: On Ising model with four competing interactions on Cayley tree.
Math. Phys., Anal. Geom. 12, 141–156 (2009)

20. Potts, R.B.: Some generalized order-disorder transformations. Proc. Camb. Philos. Soc. 48, 106–109
(1952)

21. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)
22. Ganikhodjaev, N.N., Akin, H., Temir, S.: Potts model with two competing binary interactions. Turk. J.

Math. 31, 229–238 (2007)
23. Moraal, H.: Physica 92A, 305 (1978)


	Modulated Phase of a Potts Model with Competing Binary Interactions on a Cayley Tree
	Abstract
	Introduction
	Definitions
	Cayley Tree 
	The Model 

	Basic Equations
	Morphology of the Phase Diagram
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


